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Chapter 1 Introduction

In December 1995, Prof. L. O. Chua visited National Chiao-Tung
University to deliver a key-note speech at an international conference
on neural networks. He lectured on the theory and applications of CNN
and showed us a 10× 10 cells CNN chips, [12], [13].

The lecture was very interesting and impressive. At the end of his
talk, he discussed some interesting open problems for mathematicians.
During the break, Prof. S. N. Chow introduced me to Leon. Shui-Nee
was visiting Tsing-Hua University for one year and was an old friend
of Leon and me. I told Leon that I was interested in his problems and
asked him to explain them to me further. Next morning, he brought a
piece of paper with the hotel’s letterhead, descrbing three open prob-
lems. He took some time to describe the problems in great detail to
ensure that I had fully understood them. I then began my research
on the mathematical foundations of CNNs and a long friendship with
Leon.

Leon wants to know about the human brain and try to imitate the
brain functions to produce very powerful, universal CNN chips for var-
ious applications, such as image processing, patterns recognition and
others, and especially in areas in which the digital computers are not
so effective.

A typical two-dimensional CNN is of the form

(1.1)
dxi,j

dt
= −xi,j + z +

∑

|k|,|l|≤1

ak,lf(xi+k,j+l) +
∑

|k|,|l|≤1

bk,lf(ui+k,j+l),

(i, j) ∈ Z2, and

(1.2) xi,j(0) = x0
i,j.

Where the output function f is a piecewise linear function of the form
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(1.3) f(x) =
1

2
(|x + 1| − |x− 1|).

Fig. 1.1. Output function y = f(x).

A = (akl) is a feedback template, a spatial-invariant template, and
B = (bkl) is a controlling template, z is the biased term or threshold.
The quantities xi,j denote the state at cell cij.

Figure 1.2 presents the CNN.

Fig. 1.2. CNN
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Stationary solutions x̄ = (x̄ij) of (1.1) are very important in studying
CNNs, their outputs ȳ = (f(x̄ij)) are called patterns. Chua and Yang
[12] and later Lin and Shih [27] showed that (1.1) behaves like a gradient
system when template A is symmetric, meaning that, a−k,−l = ak,l for
all |k| and |l| ≤ 1. In this case, every trajectory tends to a stable
stationary solution as time passes. For other templates, the trajectories
could be periodic, quasi-periodic or chaotic [26], [33].

Among the stationary solutions, the mosaic solutions are stable and
are crucial to studying the complexity of (1.1). A mosaic solution x̄
satisfies |x̄i,j| ≥ 1 for all (i, j) ∈ Z2. Its corresponding pattern ȳ =
(f(x̄ij)) is called a mosaic pattern. In this case, |f(x̄ij)| = 1.

Some basic problems in CNN theory can be stated as follows:

(I) Direct problem: Given any P ⊂ P 19 = {(z, A, B) : A and B are 3×
3 real matrices and z ∈ R}, determineM(P), the set of all mosaic
patterns of (1.1).

(II) Inverse Problem or Learning Problem: Given a set of stationary
patterns U , determine a set of parameters P ⊂ P19, such that
U = M(P).

(III) Study the complexity of the set of mosaic patterns M(P) for each
subset P ⊂ P19.

Given (z, A, B) ∈ P19, the complexity of the set of mosaic pat-
terns M(z, A, B) can be studied with reference to spatial entropy. In-
deed, on finite lattice Zm×n, the number of mosaic patterns on Zm×n is
Γ(m,n; z, A,B). The spatial entropy of M(z, A, B) is defined by

h(M(z, A, B)) = lim
m,n→∞

log Γ(m,n; z, A,B)

mn
.

The limit always exists, see [5], [8], [9], [10], [25].
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Now, M(z, A,B) exhibits spatial chaos if h(M(z, A, B)) > 0. In
this case, Γ(m,n; z, A,B) ∼ ehmn as m,n → ∞. M(z, A,B) describes
pattern formation if h(M(z, A, B)) = 0.

The following chapters presents some answers to those problems.
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Chapter 2 Local Patterns

This chapter investigates the generation of local patterns for CNN
(1.1).

Without a controlling term, the stationary solution to (1.1) satisfies

(2.1) −xij + z +
∑

|k|,|l|≤1

ak,lyi+k,j+l = 0, for (i, j) ∈ Z2.

The methods are illustrated initially by studying one-dimensional
CNN with template A = [r, a, s]: equation

(2.2)
dxi

dt
= −xi + z + ryi−1 + ayi + syi+1, for i ∈ Z1,

and the corresponding stationary equation

(2.3) xi = z + ryi−1 + ayi + syi+1, for i ∈ Z1.

Firstly, consider the mosaic solution x = (xi) of Eq. (2.3).
If xi ≥ 1, i.e., yi = 1, then

(2.4) (a− 1) + z + ryi−1 + syi+1 ≥ 0.

If xi ≤ −1, i.e., yi = −1, then

(2.5) (a− 1)− z − (ryi−1 + syi+1) ≥ 0.

Equation (2.3) has four parameters z, a, r, s. The (r, s)-plane is ini-
tially partitioned as follows to solve Eqs. (2.4) and (2.5).
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Fig. 2.1. Primary partition of (r, s)-plane.

However, in the (a, z)-plane, two sets of four straight-lines are im-
portant. The first set is

(2.6) l+k : a− 1 + z + ryl + syr = 0

which is related to (2.4), and the second set is

(2.7) l−k : a− 1− z − ryl − syr = 0

which is related to (2.5),
here yl and yr ∈ {−1, 1} and 1 ≤ k ≤ 4.

When (r, s) lies in the open regions (I)∼(VIII) the Figs. of (2.6) and
(2.7) can be drawn like Figs. 2.2. and 2.3.

7



Fig. 2.2. Lines l+k .

Fig. 2.3. Lines l−k .
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Combining Figs. 2.2 and 2.3, enables the (a, z)-plane to be parti-
tioned as in Fig. 2.4.

Fig. 2.4. Partition of (a, z)-plane.

The symbols [m,n] in Fig. 2.4 have the following meanings. Con-
sider (r, s) lies in region (I) in Fig. 2.1:

(2.8) r > s > 0.

Denote by

(2.9) C+
1 = C−

4 = −r − s, C+
2 = C−

3 = −r + s,
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C+
3 = C−

2 = r − s, C+
4 = C−

1 = r + s

Then, C+
4 > C+

3 > 0 > C+
2 > C+

1 are the intersects of l+i and l−j on
the z-axis as in Figs. 2.2 and 2.3, respectively.

With reference to the local patterns on 3-cells, +1 is represented by
the symbol + and -1 is represented by the symbol -.

Under the condition (2.8), the eight local patterns can be listed and
ordered as follows.

Fig. 2.5. Ordering of local patterns in region (I).

Now, when (a, z) lies in region [m,n] in Fig. 2.4, the only admissible
patterns are exactly, 1©· · · m© and 1©′ · · · n©′. For example, when (2.8)
holds and (a, z) ∈ [3, 2], then only 1©, 2©, 3©, 1©′ and 2©′ can be pro-
duced. This fact is equivalent to the holding of inequalities (2.4) and
(2.5) if and only if yi−1, yi, yi+1 are of the form 1©, 2©, 3©, 1©′ and 2©′.

Similarly, in each region from (II) to (VIII), an ordering of eight local
patterns on 3-cells can be defined as in Fig. 2.5. Fig. 2.6 presents the
complete ordering diagrams. The order are arranged from the first to
the fourth as the local patterns run from the bottom to the top. There-
fore, for each region from (I) to (VIII), (a, z)-plane can be partitioned
into 5× 5 regions [m,n], as in Fig. 2.4, 0 ≤ m,n ≤ 4.
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Fig. 2.6. Orderings of local patterns in (r, s) plane.
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The regions in (a, z)-plane are reduced when (r, z) lies on the bound-
aries of open regions in (r, s)-plane. Indeed, when r = s, i.e., A =
[r, a, r] is symmetric, then C+

2 = C+
3 = 0. On the other hand, when

s = −r, i.e., A = [r, a,−r] is antisymmetric, then r(+1) + s(+1) =
r(−1) + s(−1) = 0, as shown in Fig. 2.7. In these cases, region [m,n]
with m = 2 or n = 2 disappears and then the regions in the (a, z)-plane
shrink to 4× 4 , as shown in Fig. 2.8.

Fig. 2.7. Orderings of local patterns when s = r or s = −r.
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Fig. 2.8. Partition of (a, z)-plane when s = r or s = −r.

Finally, on the r-axis, where s = 0 and the s-axis, where r = 0. The
local patterns are ordered as shown in Fig. 2.9.
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Fig. 2.9. Ordering of local patterns on r and s-axis.

The regions [m,n] in which m or n equals 1 or 3 disappear and the
number of regions in the (a, z)-plane decreases further to 3×3, as shown
in Fig. 2.10.

14



Fig. 2.10. Partition of (a, z)-plane when s = 0 or r = 0.

Combining the partitions of the (r, s)-plane and the (a, z)-plane,
yields the following result for the Direct Problem.

Theorem 2.1 For one-dimensional CNN of Eq.(2.3). There are 200
open subregions Pk, 1 ≤ k ≤ 200, of P4 ≡ {(A, z) : z ∈ R1 and A =
[r, a, s] is a 1× 3 real matrix} such that

(i) P4 =
200⋃

k=1

Pk,

(ii) Pk

⋂Pl = ∅ if k 6= l,

(iii) (A, z) and (Ã, z̃) in Pk for some k if and only if they generate the
same local patterns.
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The method can be applied to Eq.(2.1), for the two-dimensional
problem [18]. In this case, the parameters are z and A which is a 3× 3
real matrix. The Direct Problem can be solved as follows.

Theorem 2.2. There is a positive integer K and unique set of open
subregions {Pk}K

k=1 of P10 = {(z, A) : z ∈ R1 and A is a 3 × 3 real
matrix.} satisfying

(i) P10 =
K⋃

k=1

Pk ,

(ii) Pk

⋂Pl = ∅ if k 6= l,

(iii) (A, z) and (Ã, z̃) ∈ Pk for some k if and only if they generate the
same local patterns.

The result can also be generated for a larger template (2d + 1) ×
(2d + 1) matrix A, d ≥ 1. For the details see [18].
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Chapter 3 One-dimensional CNN

The previous chapter described the generation of local patterns.
This chapter discusses the extension of local patterns to the whole
Z1. The two-dimensional case will be discussed in Part II ”Pattern
generation problems“ below.

The method for extending to global patterns involves determining
the related transition matrix for a given set of local patterns.

For simplicity, only A = [r, a, s] is considered. The set
∑

3×1 of all
local patterns defined on 3-cell can be arranged into the following or-
dering matrix X3×1 = [pij]4×4.

Fig. 3.1. Ordering matrix X3×1.

Notably, the symbols - and + are ordered by ¯ < ¢ and then
lexicographically for patterns on Zn×1, for n ≥ 2.

Given a subset B ⊂ ∑
3×1, which is called a basic set, a transition

matrix T = T (B) can be introduced as follows, and T = (tij)4×4 is

17



defined as

(3.1) tij =

{
1 if pij ∈ B,
0 if pij ∈/ B.

Example 3.1. On [3, 2] of (I), the basic set

B = {− −−,−−+, + + +, + +−,−+ +}.
Hence

T =




1 1 0 0
0 0 0 1
0 0 0 0
0 0 1 1




Note that

(3.2) Γn+2 ≡ |T n| = the sum of all entries in Tn,

and is the number of all admissible pattern on Zn+2, n ≥ 1, which
can be generated from T (or B). The spatial entropy is defined as

(3.3) h(T ) = lim
n→∞

log Γn

n
.

The limit exists and equals log ρ(T ), where ρ(T ) is the maximum eigen-
value of T according to the Perron-Frobenius Theorem. When h(T ) >

0, the spatial chaos occurs. When h(T ) = 0, the pattern formation
arises. The following theorem indicates which regions in P4 have posi-
tive entropy.
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Theorem 3.2. The open regions with positive entropy in (a, z) -planes
for (r, s) in (I)∼(VIII) are displayed in Fig.3.2, where λi, 0 ≤ i ≤ 4, is
the largest root of the polynomial defined by

Q0(λ) = λ− 2, λ0 = 2,
Q1(λ) = λ3 − λ2 − λ− 1, λ1

.
= 1.839286,

Q2(λ) = λ3 − 2λ2 + λ− 1, λ2
.
= 1.754877,

Q3(λ) = λ2 − λ− 1, λ3 = g
.
= 1.61803,

Q4(λ) = λ3 − λ− 1, λ4
.
= 1.324717 .

The entropy in the region is log λi.
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Fig. 3.2.
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Remark 3.3. The results of Theorem 3.2 can be generalized to any
template A = [r1, r2, . . . , rk, a, s1, s2, . . . , sk], k ≥ 1.

Remark 3.4. Given a basic set B ⊂ ∑
3×1, the exact number ΓB,n

of patterns with various boundary conditions-Dirichlet, Neumann and
periodic on Zn×1 can be computed, [7].
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Chapter 4 Spatial disorder of inclined output

function

In the previous chapter, the output function f(x) is flat in the range
|x| > 1. This chapter considers the output function f(x) which is non-
flat in the range |x| > 1. It produces some interesting new phenomena
including spatial entropy [1], [2], [3], [4], [17].

The general three-piecewise linear output function is defined by

(4.1) f(x) =





mx + k −m if x ≥ 1,
kx if − 1 ≤ x ≤ 1,

lx− k + l if x ≤ −1

where, k > 0 and l, m ≥ 0. Moreover, when k = 1,

(4.2) fl,m(x) =





mx + 1−m if x ≥ 1,
x if − 1 ≤ x ≤ 1,

lx− 1 + l if x ≤ −1

Furthermore, when k = 1 and l = m, fl,m is symmetric with respect
to the origin and is denoted by

(4.3) fm(x) =





mx + 1−m if x ≥ 1,
x if − 1 ≤ x ≤ 1,

mx− 1 + m if x ≤ −1

fm is studied first. Consider A = [r, a, s] and z = 0 in the stationary
equation (2.3):

(4.4) xi = ryi−1 + ayi + syi+1,

for i ∈ Z1. When m > 0, the inverse function gm of fm exists and
is given by
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(4.5) gm(v) =





1
mv − 1

m + 1 if v ≥ 1,

v if − 1 ≤ v ≤ 1,

1
mv − 1 + 1

m if v ≤ −1

Using the inverse function gm, Eq. (4.4) can be rewritten as

(4.6) gm(vi) = rvi−1 + avi + svi+1.

If r = 0 and s 6= 0, then

(4.7) vi+1 =
1

s
(gm(vi)− avi)

Therefore, Eq. (4.7) describes trajectories of a one-dimensional it-
eration map Fm defined by

(4.8) Fm(v) =
1

s
(gm(v)− av).

However, if r 6= 0 and s 6= 0, let

(4.9) ui+1 = vi,

then (4.6) can be rewritten as

(4.10) vi+1 =
1

s
(gm(vi)− avi − rui).

Therefore, (4.9) and (4.10) are trajectories of two-dimensional iter-
ation map

(4.11) Fm(u, v) = (v,
1

s
(gm(v)− av − ru)).

This chapter focuses on the complexity of the one-dimensional map
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Fm in (4.8). For two-dimensional map (4.11), when m is positive
and sufficiently small, the Smale horseshoe appears, see [17]. For
these maps, each bounded trajectory will corresponds to the outputs
of bounded stationary solutions. Furthermore, if the maps are chaotic,
then the stationary solutions of Eq. (4.4) are spatially disordered. How-
ever, only stable stationary solutions of to (4.4) should be considered.
Therefore, the set of all stable bounded orbits Sm of Fm must be con-
sidered. If the entropy of Sm is positive, then the stable stationary
solutions to Eq. (4.4) represent spatial disorder, or spatial chaos.

The stability considered herein is linear stability. The following def-
initions are applied.

Definition 4.1. Let x̄ = (x̄i)
i=∞
i=−∞ be a stationary solutions to Eq.

(4.4). Then x̄ is called a non-transitional stationary solution if |x̄i| 6= 1
for all i. The linearized operator of these x̄ is defined by

(4.12) (L(x̄)ξ)i = −ξi + af ′m(x̄i)ξi + sf ′m(x̄i+1)ξi+1

for ξ = (ξi)
i=∞
i=−∞ ∈ l2. x̄ is called stable if all real parts of the eigenval-

ues of L are negative with eigenvector in l2 and unstable otherwise.

Notably, since fm is not differentiable in transition state xi = 1, only
non-transitional stationary solutions are considered.

We firstly state the following stability result; for the proof see [19].

Lemma 4.2. Assume a > 1, r = 0 and s > 0 and m > 0. Let
x̄ = (x̄i)

i=∞
i=−∞ be a non-transitional stationary solution to Eq. (4.4).

Then

(i) if there exists i ∈ Z1 such that |x̄i| < 1, then x̄ is unstable.

(ii) if m(a + s) < 1 and |x̄i| > 1 for all i ∈ Z1, then x̄ is stable.

The stability requires only part of the graph of u = Fm(v) which lie
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in {(v, u) : |v| > 1 and |u| > 1} is relevant.
Thus, the map Fm is considered is a gap map associated with the

solid part of the graph in Fig. 4.1.

Fig. 4.1. Gap map Fm.

The main result for Eq.(4.4) with an inclined output function can
be stated as follow.

Theorem 4.3. Suppose z = 0, r = 0 and s > 0, and a > s+1. Denote

(4.13) m∞ = m∞(a, s) =
a− s− 1

a(a− 1) + s(a− 2)
,

(4.14) m2 = m2(a, s) =
a− s− 1

a(a− 1) + s(a− 1)
,
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and h(m) is the spatial entropy of Fm. Then there exists a strictly
decreasing sequence {mp}∞p=2 with

lim
p→∞

mp = m∞

such that

(i) m ∈ [0,m∞), h(m) = log 2,

(ii) m ∈ [mp,mp−1), h(m) = log λp, where λp is the largest root of

(4.15) λ2p−2 − (

p−2∑
i=0

λi)
2 = 0.

Moreover, λp is strictly increasing in p with λ3 = g < λp < 2 for
p ≥ 4,

(iii) if m2 ≤ m <
1

a + s
, then h(m) = 0.

The entropy function h(m) is a step function of m of the form shown
in Fig. 4.2. The result of Theorem 4.3 show that the entropy h(m) is
a devil-staircase like function and is decreasing in m.
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Fig. 4.2. Entropy function h(m).

Proof of Theorem 4.3.
Denote the fixed points of Fm by A, O and D with

O = (0, 0),

A = (A1, A2) = (
1−m

1−m(a + s)
,

1−m

1−m(a + s)
),

D = (D1, D2) = (
m− 1

1−m(a + s)
,

m− 1

1−m(a + s)
) = −A,

and B = (1, Fm(1)) and C = (−1, Fm(−1)),

i.e.,

B = (B1, B2) = (1,
1

s
(1− a)), C = (C1, C2) = (−1,

1

s
(a− 1)).
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The theorem is proven by verifying that mp satisfies

(4.16) F p−1
mp

(a− 1) = 1,

and Fmp
(v) has 2p periodic cycle {F i

mp
(c)}2p−1

i=0 , for p ≥ 2.
For simplicity, the proof for p = 2 and p = 3 are sketched, for p ≥ 4,

see [19].

When p = 2, then m2 is given by

(4.17)
a− 2

a(a− 1)
,

and R+
1 (m2) = a − 1. Then, there is 4-periodic cycle staring from

C following by R+, B, L− and back to C, see Fig. 4.3. The four stable
subintervals Ij, 1 ≤ j ≤ 4, have the following covering relation

I1 → I2,

I4 → I3,

I2 → I3,
and

I3 → I2.

The transition matrix M(2) of the stable subintervals is given by

(4.18) M(2) =




0 1 0 0
0 0 1 0
0 1 0 0
0 0 1 0


 .

Hence, the entropy h(m2) = 0.
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       u=T(v)

u=v

A

v

   u

    B

     C

D

1   O-1

   R +

R-

    L +

        L -

   I
1

     I
2    I

3
   I

4

Fig. 4.3. Graph Fm2
(v) and its stable subintervals.

For p = 3, the graph and Fm3
(v) and its subintervals are given in

Fig. 4.4. The covering relation for 2p stable subintervals are given by
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(4.19)





I1 → I2 → · · · → Ip−1 → Ip,

I2p → I2p−1 → · · · → Ip+2 → Ip+1,

Ip → Ik for k = p + 1 to 2p− 1,

Ip+1 → Ik for k = 2 to p.

In particular, for p = 3

I1 → I2 → I3,
I6 → I5 → I4,

I3 → I4 ∪ I5,

and
I4 → I2 ∪ I3.

Therefore, the transition matrix is

(4.20) M(3) =




0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 1 0
0 1 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0




6×6

.

The entropy h(m3) = log λ3, λ3 satisfies

λ4 − (λ + 1)2 = 0,

as in (4.15).
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       u=T(v)

u=v

A

v

   u

    B

     C

1   O-1

   R +

R-

    L +

        L -

   I
1

     I
2    I

3
   I

4

   D

  I
6
I

5

Fig. 4.4. Graph Fm3
(v) and its stable subintervals.

Remark 4.4.

(i) When the biased term z 6= 0, the Fm is no longer symmetric with
respect to the origin. However, results like those from Theorem
4.3 were obtained in [2].
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(ii) When the output function is asymmetric, i.e., fl,m with l 6= m.
The situation is much more complicated. For z = 0, the entropy
function h(l,m) has already been studied in [1]. Now, the devil-
staircase-like behavior is exhibited in both l and m directions.
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Chapter 5 Bifurcations and chaos in two-cell

CNN with periodic inputs

This chapter studies the bifurcation and temporal chaos in two-cell
CNN with periodic inputs.

Consider the following two-cell CNN with input:

(5.1)

{
ẋ1 = −x1 + ay1 + sy2 + bu(t),
ẋ2 = −x2 + ry1 + ay2,

where the feedback template A = [r, a, s] satisfies

(5.2) a > 1, a− 1 < r and a− 1 < −s.

It is easy to verify that condition (5.2) implies that there exists a
limit cycle Λ0(A) to (5.1) when b = 0.

The input function (or forcing function) is

(5.3) u(t) = sin
2π

T
t

with period T > 0 and amplitude b > 0.
The main theme in studying (5.1) is to find out appropriate inputs

such that complicated attractors appear. Indeed, Zou and Nossek [33]
discovered a ladyshoe type chaotic attractor when

(5.4) A = [1.2, 2,−1.2], T = 4 and b ∼= 4.08.

In this chapter, we recover their results and study more general
situation.

The programs for studying bifurcation and chaos are as follow.

(I) Take b = 0 and study how the sustained limit cycles Λ0(A) vary
with the template A = [r, a, s]. The existence and uniqueness of
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limit cycles will be studied.

(II) Fix template A = [r, a, s], find possible range of input periods T

such that (5.1) exhibit chaotic behavior for suitable b > 0. In
particular, try to find the relation between T and T0(A) such that
(5.1) have complex trajectories for some b > 0.

(III) Fix A and T obtained in (I) and (II), try to identify critical num-
bers of b, say, b∗0 < b∗1 < . . . < b∗k, which represent various types of
trajectories of (5.1) and may cause distinct bifurcations when b∗j is
crossing.

In section 5.1, the existence and uniqueness problem of periodic cycle
to Eq. (5.1) when b = 0 is considered. In section 5.2, the bifurcations
precede chaos is discussed. The FFT is used to study periodic and
quasi-periodic attractors. In section 5.3, the temporal chaos is investi-
gated. The effects of input period T can be studied by examining the
asymptotic limit cycle Λ∞(T, A) with period T . Then, the study focus
on (i) effect of the input amplitude, (ii) effect of the input period and
(iii) effect of the varying templates.

§ 5.1. Limit cycles

This section discusses the existence and uniqueness of limit cycle to
Eq. (5.1) when b = 0. Since the nonlinear output function f is piecewise
linear, the phase-plane R2 can be divided into nine regions which are
the mosaic (saturated) region Mj, the transitional (partial saturated)
region Tj, and the interior (not saturated) region I, j = 1, 2, 3, 4, as in
Fig. 5.1.
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Fig. 5.1.

It is easy to see that periodic orbit does not lie entirely in the inte-
rior region I. Therefore, periodic orbits have to intersect the exterior
region E , here

(5.5) E = R2 − I =
4⋃

k=1

Tk ∪Mk.

A periodic orbit Λ is called an exterior (periodic) cycle if Λ ⊆ E , oth-
erwise Λ is called a non-exterior cycle, i.e., Λ

⋂
I 6= ∅.

We firstly present the following result.

Theorem 5.1. Assume (5.2) and b = 0, then

(i) limit cycles exist,
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(ii) no more than two limit cycles are present in the exterior region E ,
and

(iii) if 1 < a ≤ 2, then at most one exterior limit cycle exists.

The multiplicity of exterior limit cycle can be stated as follows.

Theorem 5.2. Assume (5.2) and b = 0, define function

(5.6) R(r, a, s) = δ{(−δ +
s

a
ξ)(η − ξκq) + (η − γδη

aξ
)(δ − γχq)

+(
−rs

a2 +
rδ

aξ
)(η − ξκq)(δ − γχq)},

where

(5.7)





ξ = r − a + 1, η = r + a− 1,
γ = 1− s− a, δ = a− s− a,

q =
1

a− 1
, κ =

ξ

η
and χ =

r

δ
.

Then,

(i) there is a unique exterior limit cycle if R > 0, and

(ii) there is no exterior limit cycle if R < 0.

When A is antisymmetric, i.e., −s = r, R(r, a, s) can be reduced to

(5.8) R(r, a) = (a(a− 1) + r2 − r)− κq(a(a− 1) + r2 + r).

Proof of Theorem 5.1.

(i) Under the assumptions (5.2), the origin O = (0, 0) can be easily
verified to be the only steady state of (5.1), moreover, O is an
unstable spiral. Indeed, the associated eigenvalues at O are given
by
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λ± = a− 1± i
√−rs.

By Poincaré-Bendixson Theorem, a limit cycle exists. Apart from
the origins, all trajectories will tend to one of the limit cycles as
t →∞.

Fig. 5.2. A typical orbit of (5.1) with initial condition (α,−1),
and 1 ≤ α ≤ a− s.

(ii) Periodic solutions as in Thiran [32] are constructed to show that
no more than two periodic orbits exist in exterior region E .

Now starting at the point (α,−1) at t = 0, where 1 ≤ α ≤ a− s,
the trajectory Γα in T1 is followed; it intersects x2 = 1 at the point
(α1, 1) on t = t1, 1 < α1 , enters M1; then intersects x1 = 1 at
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(1, β2) on t = t2, enters T2; then intersects x1 = −1 at the point
(−1, β3) on t = t3, and finally enters M2 and intersects x2 = 1 at
the point (α4, 1) on t = t4, i.e.,

(5.9)

( x1(0), x2(0)) = ( α, −1),
(x1(t1), x2(t1)) = ( α1, 1),
(x1(t2), x2(t2)) = ( 1, β2),
(x1(t3), x2(t3)) = (−1, β3),
(x1(t4), x2(t4)) = ( α4, 1),

see Fig. 5.2. Since b = 0, (5.1) is an autonomous equation. The
periodic orbit cannot intersect itself. Therefore, by (i), Γα is a
periodic (closed) orbit if and only if

(5.10) α4 = −α.

α1, β2, β3, α4 and t1, t2, t3, t4 must be computed in terms of α. The
following expressions can be straight-forwardly obtained. The de-
tails are omitted here. It is easy to verify

(5.11) α1 = a + s(1−r)
a + (α− a + s(r+1)

a )( ξ
η)

q,

(5.12) β2 = a + r − ηγ
α1−a−s ,

(5.13) β3 = a− r(s+1)
a + (β2 − a− r(1−s)

a )(γ
δ )

q,

(5.14) α4 = δξ
β3+r−a + s− a.

α4 is written as a function of α to show that (5.10) has at most
two solutions for α ∈ [1, a − s]. Indeed, in the following, ki, i =
1, · · · , 17, are constants that depend on a, r, s, but are independent
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of α,

α1 = k1α + k2 ,

β2 =
k4

k1α + k3
+ k5 ,

β3 = k6β2 + k7 ,

α4 =
k9

β3 + k8
+ k10 ,

and

(5.15) α4 =
k9α + k13

k11α + k12
+ k14.

Substituting (5.15) into (5.10) yields, a quadratic equation for α,
i.e.,

k15α
2 + k16α + k17 = 0.

Therefore, (5.10) has at most two solutions in [1, a− s].

(iii) Note that

(5.16)
∂

∂x1
(−x1 + ay1 + sy2) +

∂

∂x2
(−x2 + ry1 + ay2)

=

{
a− 2 if (x1, x2) ∈ Ti ,
−2 if (x1, x2) ∈Mi ,

1 ≤ i ≤ 4. The sign is nonpositive if a ≤ 2. The Dulac criteria
rule out the second closed orbit in E . The proof is complete. ¥

To prove Theorem 5.2, it sufficies to prove following theorem.

Theorem 5.3. Assume (5.2) and b = 0. Let ξ, η, γ, δ and q be
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given by (5.7).
(i) There is a periodic cycle in the exterior region E if the following
conditions are satisfied.

(E1) a− 1 +
s(1− r)

a
+ (1− a +

s(r + 1)

a
)(

ξ

η
)q ≥ 0 ,

(E2) a− 1− r(1 + s)

a
+ (1− a− r(1− s)

a
)(

γ

δ
)q ≥ 0 .

In particular, if A is antisymmetric, i.e., −s = r, (E1) and (E2) is
equivalent to

(E) a(a− 1) + r(r − 1)− [a(a− 1) + r(r + 1)](
ξ

η
)q ≥ 0.

(ii) There is no periodic orbit in the exterior region E if one of the
following conditions holds.

(N1) a− 1 +
s(1− r)

a
+

sξ

a
(
ξ

η
)q < 0 ,

or

(N2) a− 1− r(1 + s)

a
− rγ

a
(
γ

δ
)q < 0 .

In that case, all periodic cycles are necessary intersect the interior region
I.
Proof.

The existence results are first proved.
It is easy to verify that if Λ is an exterior periodic cycle then

Λ
⋂{(x1,−1)|x1 ∈ [1, a− s]} 6= ∅.
From (5.7) and (E1),

α1(α) ≥ 1 for all α ∈ [1, a− s] .
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Similarly, from (5.13) and (N1),

β3(β2) ≥ 1 for all β2 ∈ [1, a + r] .

Therefore, x1(α, 1) maps [1, a−s] into [−a+s,−1]. It implies −x1(α, 1)
maps [1, a− s] into itself and then has a fixed point in [1, a− s]. Hence,
(5.10) has at least one solution in [1, a − s]. This proves that exterior
periodic cycle exists.

Clearly, (E1) and (E2) is equivalent to (E) when s = −r.
Finally, from (5.12) and (N1),

α1(α) < 1 for all α ∈ [1, a− s] ,

and from (5.13) and (N1),

β3(β2) < 1 forall β2 ∈ [1, a + r] .

Hence, there is no exterior periodic cycle exists. The proof is complete.
¥

Notably, (N1) and (N2) can be replaced by stronger conditions that
can be verified easily as follows.

0 < a− 1 < r < 1 and − s ≥ a(a− 1)

1− r
,

and

0 < a− 1 < −s < 1 and r ≥ a(a− 1)

1 + s
.

§ 5.2. Bifurcation Precede chaos

Intuitively, when the amplitude b of input bu(t) is small, period T

is different from the period T0 of sustained limit cycle, then the (5.1)
may have complicated trajectory like quasi-periodic but not chaotic.
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Therefore, in the section, the impact of an input bu(t) on its period
T and amplitude b are studied for the bifurcation phenomena before
chaos occurs.

Consider (5.1) with initial conditions

(5.17) x1(0) = ξ1 and x2(0) = ξ2.

The solution of (5.1) and (5.17) is denoted by

(x1(t, ξ1, ξ2), x2(t, ξ1, ξ2)),

where xi(t, ξ1, ξ2) ≡ xi(t, ξ1, ξ2; b, T, A), i = 1 and 2.
The ω-limit set of (5.1) is denoted by

(ω(ξ1, ξ2; b, T, A)),

and the nonwandering set of (5.1) is denoted by

(5.18) Ω(b, T, A) = ∪ω(ξ1, ξ2; b, T, A), (ξ1, ξ2) ∈ R2.

Since the input is T -periodic, for a fixed parameter A, T and b, a

two-dimensional Poincaré map of (5.1) can be defined as

(5.19) F (ξ1, ξ2) = (x1(T, ξ1, ξ2), x2(T, ξ1, ξ2)).

Now, the study of the bifurcations problem of (5.1) is equivalent to
the study of how Ω(b, T, A) changes when b, T and A vary.
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In general, it is hard to identify Ω(b, T, A) and to know how it
changes. Therefore, we concerned mainly with how ”typical“ trajec-
tories vary with b, T, A. In our problem, a typical trajectory Γb ≡
Γ(b, T, A) and ω-limit set ωb = ω(b, T, A) are chosen of (5.1) with the
initial condition at the origin O = (0, 0). The ω-limit set of Poincaré
map is denoted by ω̂(b, T, A).

To show Ω(b, T, A) is a chaotic attractor, the following conditions
must be proven to hold

(i) Γ(b, T, A) have a positive Lyapunov exponent,

(ii) ω̂(b, T, A) is fractal,

(iii) FFT (Fast Fourier Transform) of Γ(b, T, A) have a broad-band.

We first use FFT to study (5.1). Let Λ0 be the sustained limit cycle
for b = 0 and is obtained from Theorem 5.1. Apply FFT to the x1-
component of Γb, i.e., x1(t, 0, 0), t > 0. Pick up the first N frequencies
of these data, i.e., let {ake

iωkt}N
k=1 satisfy

(5.20) |a1| ≥ |a2| ≥ . . . ≥ |aN | ≥ |aω|

for other frequency ω, where ak = ak(b) and ωk = ωk(b). Denote

(5.21) τk(b) =
2π

ωk(b)
,

the period of the kth mode. For simplicity, denote

(5.22) Tb = τ1(b),

which corresponds to the largest amplitude except for T -mode.
Let aT = aT (b, T, A) be the amplitude of the period T mode. The

ratio
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(5.23) A(b) ≡ |aT (b)|
|a1(b)|

represents the relative strength of the T -mode with respect to the Tb-
mode as b varies. Equation (5.1) is called Tb dominant if A(b) ¿ 1,
the Tb and T modes are comparable if A(b) ' 1 but T is dominant if
A(b) À 1.

It is not difficult to verify

(5.24) lim
b→0+

Tb = T0.

The normalized curves

(5.25) Rk(b) =
τk(b)

Tb

of τk(b), 1 ≤ k ≤ N , are very useful for finding periodic orbits. To
be more specific, in the ZN-(Zou-Nossek) case, Rk(b) with 1 ≤ k ≤ 20
and b ∈ [0, 4] are as in Fig. 5.3.
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Fig.5.3. FFT of the largest 20 modes for the ZN-case :
A = [1.2, 2,−1.2] and T = 4.

(1) The amplitude of the T = 4 mode (represented by a red thick
line in Fig. 5.3) grows steadily as b increases in (0, 3.826). It is
comparable to Tb when b is close to 4, near the onset of chaos.

(2) Curve number 2© decreases and curve number 3© increases and
merges into Tb/2 and giving rise to 4T periodic cycles. The 4T cy-
cle will survive for quite a large range of parameters in (0.43, 0.66).
Curves merging is very common and induces a period cycle.

(3) The Tb/3 mode maintains the largest parameters in (0, 3.826) and
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gives rise to a 3T periodic cycle in (1.2, 3.826).

(4) The dotted regions and window regions (stepped regions) inter-
weave with each other. Stepped regions represent periodic cycles
and dotted regions represent quasi-periodic orbits.

In the ZN-case, when b ≥ 3.826, the strength of the T -mode is
comparable with or larger than the strength of the Tb-mode. In the
following, a heuristic argument is used to derive relations among for b,
T and T0 when Tb and T are comparable.

Let

(5.26) γ(t) = Λ′0(t + t0),

Λ0(t) be the limit cycle of (5.1) with b = 0. The first equation of
(5.1) is modelled as

(5.27)
dx

dt
= γ(t) + bu(t).

Now, γ(t) is a periodic function with period T0 and u(t) is a period
function with period T . The two time scales of the functions γ and u

can be normalized to a single time scale τ ∈ [0, 1] by setting t = T0τ

for γ and t = Tτ for u. Hence,

(5.28) x(t) = x(0) + T0Γ(τ) + bTU(τ) , τ ∈ [0, 1] ,

where

Γ(τ) =

∫ T0τ

0
γ(s)ds and U(τ) =

∫ Tτ

0
u(s)ds

are normalized periodic functions with period one. From (5.28), x(t)
can very maximally if T0 and bT have the same order of magnitudes
and an appropriate time shift t0 occurs in (5.28). Therefore, for a fixed
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template A = [r, p, s], let T0 = T0(A) be the period of the sustained
limit cycle Λ0(A) (without input), define

(5.29) b∗(T ) =
c0T0(A)

T
,

where c0 ∼ 1 is a constant that depends on A and T .
From our experiences, for a given A and T , c0 = 1 in (5.29) is a

good guess for the position at which to start the search for interesting
ranges of b. c0(A, T ) may decrease as T increases. In the ZN-case and
many other templates, (5.29) worked very well. See Fig. 5.4.
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(c) b∗3 = 4.365 (d) b∗2 = 4.2697

Fig. 5.4. Critical trajectories of b∗1, b∗2, b∗3 and b∗, when
A = [1.2, 2,−1.2] and T = 4.

Let b∗0 > 0 such that

(5.30) |a1(b, T, A)| > |aT (b, T, A)|

hold in (0, b∗0), b∗0 can be assumed to be the least upper bound of b̃

such that (5.30) holds in (0, b̃).
When a periodic window appears on the open interval B ⊂ (0, b∗0) ,
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the curve Rk(b) will be a horizontal lines, or approximately one, on B.
Furthermore, on B

(5.31) Tb = m
n T

for some positive integers m and n and (m,n) = 1, i.e., m and n

are relative prime. Therefore,

(5.32) Bm,n = {b ∈ (0, b∗0)|Tb = m
n T}

is defined. Denote by

(5.33) [T0/T ] = m∗ ,

where [x] is the largest integer which is equal to or smaller than x.
The solutions of (5.1) can be written explicitly on each of the nine

regions Mj, Tj and I. Therefore, the exact solutions of periodic or-
bits in Bm,n can be rigorously checked using a computer provided n is
not too large. The periodic cycles in Bm,n are of period mT and cir-
cle around the origin O n-times (n-copies). This explanation partially
prove of the following results.

Conjecture 5.4. Assume (5.30) holds.
Then

(i) Bm∗,1 6= ∅, i.e., a stable m∗T periodic cycle of (5.1)exists.

(ii) If (5.1) has another stable limit cycle with m∗T period in Bm∗,n∗ ⊂
(0, b∗0) and m∗/n∗ < m∗, then ∪m∗/n∗≤m/n≤m∗Bm,n is open and dense

in (b̂1, b̂2), where b̂1 = inf Bm∗,1 and b̂2 = sup Bm∗,n∗, i.e., Tb as a
function of b is a devil’s staircase in b. See Fig. 5.5.
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Figure 5.5. Devil’s staircase like period function Tb, A = [1.2, 2,−1.2],
(a) T = 4 and (b) T = 2.
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Fig. 5.6. Some typical orbits in Bm,n prior to chaotic regions,
A = [1.2, 2,−1.2] and T = 4.
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Figure 5.7. Some typical quasi-periodic orbit (a) and (c) and their
ω-limit set ω̂ of the Poincaré map (b) and (d),
A = [1.2, 2,−1.2] and T = 4.

§ 5.3. Chaos

This section discusses the chaotic phenomena that occurs when the
strength of Γb and input bu are comparable. The study of asymptotic
period cycles for various T when b is large is very useful.

Whether the ω-limit sets ωb and −ωb can be separated from each
other by the x1-axis such that one lies in the upper half of phase-plane

52



and the other lies in the lower half of phase-plane is the main concern.
The answer is affirmative when T is relatively small. See Theorem 5.5.
In any case, the system can always support a limiting cycle even for
large T .

For a given template A = [r, a, s],

(5.34) w1 = x1

b

is written as b →∞, and the limiting equation for w1 is

(5.35)
dw1

dt
= −w1 + u.

The solutions of (5.34) are

(5.36) w1(t) = ce−t + 1
1+Ω2 (sin Ωt− Ω cos Ωt) ,

where

Ω = Ω(T ) =
2π

T

and c is a constant. Consequently,

(5.37) x1(t, ξ1, ξ2; b) ∼ b
1+Ω2 (sinΩt− ΩcosΩt)

for large b and t. Notably,

(5.38) −a− r < x2(t, ξ1, ξ2; b) < a + r

always holds for large t. Now, (5.1) is assumed to have a asymptotic
limit cycle Λ∞ with period T as b → ∞. From (5.38), Λ∞ will almost
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be in the region |x1| ≥ 1. In the limit, denoted by w2(t) for x2(t; b), w2

satisfies

(5.39)
dw2

dt
= −w2 + a + r if w2 ≥ 1,

(5.40)
dw2

dt
= (a− 1)w2 + r if w2| ≤ 1,

(5.41)
dw2

dt
= −w2 + r − a if w2 ≤ −1.

for a total time of T/2 in the region of w1 ≥ 0. Similar equations
hold in region w1 ≤ 0 for another T/2 time. The separation theorem
are stated as follows.

Theorem 5.5. The system (5.1) can support a limiting limit cycle
Λ∞ with period T provided

(i) in region w2 ≤ −1 if

(5.42) T < T ∗
1 ≡ 2 log

2r

r + 1− a
,

(ii) in region w2 ≤ 0 if

(5.43) T < T ∗
0 ≡ 2(log

2r

r + 1− a
+

1

a− 1
log

r

r + 1− a
).

Similarly, −Λ∞ lies in w2 ≥ 1 and w2 ≥ 0, respectively.
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Fig. 5.8. Limiting limit cycle Λ∞.

Proof.

(i) Assume that Λ∞ remains in the region w2 ≤ −1 for T/2 time. Then
general solutions of (5.41) are

(5.44) w2(t) = ce−t + r − a.

For 1 ≤ β ≤ α < a + r, assume

(5.45) w2(t0) = −α, and w2(t0 +
T

2
) = −β.

Then (5.44) and (5.45) imply

(5.46) T = 2 log
α + r − a

β + r − a
.
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Since 1 ≤ β ≤ α < a + r, (5.42) follows.

(ii) Assume that Λ∞ remains in the region w2 ≤ 0 for T/2 time. Let

(5.47)

0 ≤ β ≤ 1 ≤ α < a + r ,

w2(t0) = −α ,

w2(t0 + T ′) = −1 ,

w2(t0 + T/2) = −β ,

where 0 < T ′ < T/2. Then from (5.40) and (5.41),

(5.48) w2(t) = c1e
−t + r − a for t ∈ [t0, t0 + T ′],

and

(5.49) w2(t) = c2e
(a−1)t− r

a− 1
for t ∈ [t0 +T ′, t0 +T/2].

From (5.48),

(5.50) T ′ = log
α + r − a

1 + r − a
.

Similarly, from (5.47) and (5.49),

(5.51)
T

2
− T ′ =

1

a− 1
log

r − β(a− 1)

r + 1− a
.

From (5.50) and (5.51),

T = 2{log
α + r − a

r + 1− a
+

1

a− 1
log

r − β(a− 1)

r + 1− a
}

which implies (5.43).
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The proof is complete. ¥

Remark 5.6.

(i) The perturbation method can be used to prove that there exists
a limit cycle Λb with period T for large b. Λb lies in the region
according to Theorem 5.5. The details are omitted here. See Fig
5.8.

(ii) For large T , Λ∞ can be proven to exist with period T . Furthermore,
Λ∞ spends most of T/2 time near a+r. Therefore, for large T and
large b, Λb is a symmetric T -periodic cycle like a rhombus, with
two vertices are close to (1, a + r) and (−1,−a− r), respectively.
See Fig 5.9.

Remark 5.7. When T satisfies either (5.42) or (5.43), Λ∞ and −Λ∞
are separated. Then Λb and −Λb are also separated when b is large.
For examples, in the ZN-case i.e. A = [1.2, 2,−1.2],

(5.52) T ∗
1 = 4.9698

and

(5.53) T ∗
0 = 8.5533.

Note that T = 4 < T ∗
1 has been used in Zou & Nossek [33], when

b decreases to some critical number b∗∞, ωb and −ωb cross each other
and cause crises; chaos may occur when b decreases a little further. See
Figs. 5.9.(a)∼(d). If T is too large, chaos may not occur, for example,
in the ZN-case A = [1.2, 2,−1.2] and T = 10, in that case, ωb is like
rhombus. See Fig. 5.10.
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Figure 5.9. Crises induced by ωb and −ωb when
A = [1.2, 2,−1.2] and T = 4.
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Fig. 5.10. ωb=−ωb when A = [1.2, 2,−1.2] and T = 10.

Now, a specific model of ZN-case is studied first to elucidate the
methods and the chaotic behavior. We first study the effects of input
amplitude.

§§ 5.3.1. Effects of the input amplitude

The ZN-case, with A = [1.2, 2,−1.2] and T = 4, is first considered
as a model to help to discuss the bifurcations of chaotic phenomena.
The Lyapunov exponents were computed for a long b > 0.
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Fig. 5.11. Lyapunov exponents diagram for the ZN-case with b in
(5.27, 5.13), b∗1 = 3.98, b∗2 = 4.284, b∗3 = 4.365 and b∗ = 4.2697

In each Wk and 0 ≤ k ≤ 8, the basic periodic cycle - the periodic
solutions with the smallest period - can be identified. These windows
are first compared in terms of the following characteristics of the basic
periodic cycle in each Wk.

• Range of parameters in window,

• Period in T units,

• Symmetry : “s” for symmetric and “a” for asymmetric cycles,

• Dominating mode in FFT : Tb for superiority of Tb and T for input,

• Type of attractor : “I” for type I, “II” for type II. See 5.12.
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Fig. 5.12. (a) Type I: the orbit Γb circles around all three points C+,
O and C−. (b) Type II: the orbit Γb does not circle around
all of three points C+, O and C−.

characteristics (1) (2) (3) (4) (5)

W0 (3.956,3.96) 7 a T I
W1 (3.992,4.008) 11 s Tb I
W2 (4.052,4.068) 6 a T I
W3 (4.092,4.104) 10 a T I
W4 (4.124,4.168) 4 a Tb I
W5 (4.252,4.260) 9 s T I
W6 (4.368,4.412) 8 a T I
W7 (4.42,4.431) 4 a T II
W8 (4.433,∞) 2 a T I

Fig. 5.13. Characteristics in different windows Wk, 0 ≤ k ≤ 8.
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(f) b = 4.104 ∈ W3
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Fig. 5.14. Typical Poincaré section in chaotic regions and basic
periodic cycles in windows, A = [1.2, 2,−1.2] and T = 4.

Considering Wk carefully, for example, in W4, reveals that at the
middle point of (4.124,4.168) the 4T basic periodic cycle is asymmet-
ric. To its left, a sequence of periodic-doubling occur; to its right is
a quasi-periodic region. See Fig. 5.15. Similarly, W5 includes a sym-
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metric 9T basic periodic cycle, with periodic-doubling to its left and a
quasi-periodic region to its right.

Fig. 5.15. Bifurcations diagram for ZN-case with b in window
W4 = (4.124, 4.172).

Then we study the impacts of the input periods.

§§ 5.3.2. Impact of the input periods

In the search for chaotic regions, Theorem 5.5 is first applied T ≤ T ∗
0

as in (5.43). For those T , b near

(5.54) b∗(T ) =
c0T0(A)

T
,
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is first tried. Computing three critical trajectories at b∗1, b∗2 and b∗3
is important.

Normally, b∗1, b∗2 and b∗3 near b∗(T ) whenever they exist. In the ZN-
case, the graphs of b∗, b∗1, b∗2 and b∗3 are drawn and compared with the
regions in which (5.1) has a positive Lyapunov exponent (≥ 0.02). The
chaotic regions of (5.1) are markered by ◦ in Fig. 5.16.
ecessarily isolated for each T .
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Fig. 5.16. Critical numbers b∗, b∗k, k = 1, 2, 3 for varying T ,
A = [1.2, 2,−1.2].

§§ 5.3.3. Varying Templates

For A = [1.2, 2,−1.2], T ∈ [3.5, 4.5] chaotic phenomena similar to
T = 4 were observed. For T ≥ 5, no chaotic regions are found. For
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T ∈ [2, 3], chaotic regions exist but ω̂b are not a ladyshoe. See Fig.
5.17. (a)∼(h).
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(a) T = 2 and b = 8.88. (b) T = 2 and b = 8.872.
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(c) T = 3 and b = 5.844. (d) T = 3 and b = 5.828.
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(e) T = 3.5 and b = 4.94. (f) T = 3.5 and b = 4.901.
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(g) T = 4.5 and b = 3.86. (h) T = 4.5 and b = 3.822.

Figure 5.17. Chaotic attractors and basic periodic cycles for
A = [1.2, 2,−1.2] with varying T .

Finally, the bifurcation and chaos are studied when templates vary.
The role of template A = [r, a, s] is fundamental. It governs the

basic dynamics among the inputs.
Let λ1(b, T, r, p, s) be the largest Lyapunov exponent of ω(b, T, r, p, s)

and define

(5.55) λ∗1(r, p, s) = supb>0,T>0 λ1(b, T, r, p, s).

Instead of considering all b > 0 and T > 0 in (5.55), denote

(5.56) λ∗(r, p, s) = max{λ1(b, T, r, p, s)|

δT ∗
0 ≤ T ≤ T ∗

0 and δ1b
∗(T ) ≤ b ≤ δ2b

∗(T )},

where T ∗
0 is defined in (5.43) and b∗(T ) is defined in (5.54), δ and δ1 are

small positive numbers, for example δ = δ1 = 0.1, and δ2 = 2. Numeri-
cal evidence suggests that λ∗(r, a, s) closely approximates to λ∗1(r, a, s).

Antisymmetric A is first considered, i.e., s = −r, and write
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(5.57) λ∗(r, a) = λ∗(r, a,−r).
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Fig. 5.18. The maximum Lyapunov exponent function λ∗(r, 2) for
A = [r, 2,−r].
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Fig. 5.19. The maximum Lyapunov exponent for λ∗(r, 2, s) maker
¯ for λ∗ > 0 and · for λ∗ < 0.
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(b) A = [1.5, 2,−1.7], b = 4.7, T = 2.62.
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(c) A = [4.5, 2,−4.5], b = 6.9883, T = 1.31.
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(d) A = [1.5, 2,−1.75], b = 4.28, T = 2.08.

Fig. 5.20. Some typical chaotic attractors for general A = [r, 2, s].

§§ 5.3.4. Numerical Methods

The numerical methods has been used are recalled as.

Trajectory Numerically, for a given set of parameters, a template A =
[r, a, s] that satisfies (5.2), an amplitude b and period T , the sys-
tem of differential equations is solved in FORTRAN 90 by calling
a subroutine, RKF45, using the RUNGE-KUTTA-FEHLBERG
(4,5) methods described in [14], with step size=0.05, absolute error
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1× 10−10 and relative error 1× 10−8.

Ω-limit set Since the ω-limit set ω(b, T, A) is of greatest concern, 2×
106 steps are taken in the RKF45 integration. The first 1 × 106

steps were ignored, and the following numerical methods applied
to the remaining data; the last 1 × 106 points were taken as the
ω-limit set ω(b, T, A).

Poincaré map The ω-limit set ω̂(b, T, A) of Poincará T -map is taken
every T/stepsize points from ω(b, T, A). The relative error of the
Poincaré map can be easily computed. For example, in the ZN-
case T = 4 with a step size 0.05, 80 steps must be integrated
for each point on the Poincarè map. Therefore, the relative error
1 × 10−8 × 80 = 8 × 10−7 is obtained for each successive point of
the Poincaré map.

Lyapunov exponent The Lyapunov exponents are obtained by av-
eraging eigenvalues of DF (ξ1, ξ2) on each point in ω̂b. Here, a
convergent condition is imposed that the relative error is less than
1 × 10−4. Moreover, the first 1 × 106 steps in the numerical inte-
gration are ignored to accelerate the convergence.
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